Early Morning In The City

Early Morning In The City theme by ltmreal

Download: EarlyMorningInTheCity.p3t

Early Morning In The City Theme
(4 backgrounds)

P3T Unpacker v0.12
Copyright (c) 2007. Anoop Menon

This program unpacks Playstation 3 Theme files (.p3t) so that you can touch-up an existing theme to your likings or use a certain wallpaper from it (as many themes have multiple). But remember, if you use content from another theme and release it, be sure to give credit!

Download for Windows: p3textractor.zip

Instructions:

Download p3textractor.zip from above. Extract the files to a folder with a program such as WinZip or WinRAR. Now there are multiple ways to extract the theme.

The first way is to simply open the p3t file with p3textractor.exe. If you don’t know how to do this, right click the p3t file and select Open With. Alternatively, open the p3t file and it will ask you to select a program to open with. Click Browse and find p3textractor.exe from where you previously extracted it to. It will open CMD and extract the theme to extracted.[filename]. After that, all you need to do for any future p3t files is open them and it will extract.

The second way is very simple. Just drag the p3t file to p3textractor.exe. It will open CMD and extract the theme to extracted.[filename].

For the third way, first put the p3t file you want to extract into the same folder as p3textractor.exe. Open CMD and browse to the folder with p3extractor.exe. Enter the following:
p3textractor filename.p3t [destination path]Replace filename with the name of the p3t file, and replace [destination path] with the name of the folder you want the files to be extracted to. A destination path is not required. By default it will extract to extracted.filename.

Tiger #2

Tiger theme by Andrew Maclean

Download: Tiger_2.p3t

Tiger Theme 2
(1 background)

Tiger
Temporal range: Early Pleistocene – Present
A Bengal tigress in Kanha Tiger Reserve, India
CITES Appendix I (CITES)[1]
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Carnivora
Suborder: Feliformia
Family: Felidae
Subfamily: Pantherinae
Genus: Panthera
Species:
P. tigris
Binomial name
Panthera tigris
(Linnaeus, 1758)[2]
Subspecies
Tiger distribution as of 2022
Synonyms[3]

The tiger (Panthera tigris) is a member of the genus Panthera and the largest living cat species native to Asia. It has a powerful, muscular body with a large head and paws, a long tail, and orange fur with black, mostly vertical stripes. It is traditionally classified into nine recent subspecies, though some recognise only two subspecies, mainland Asian tigers and island tigers of the Sunda Islands.

Throughout the tiger's range, it inhabits mainly forests, from coniferous and temperate broadleaf and mixed forests in the Russian Far East and Northeast China to tropical and subtropical moist broadleaf forests on the Indian subcontinent and Southeast Asia. The tiger is an apex predator and preys mainly on ungulates such as deer and wild boar, which it takes by ambush. It lives a mostly solitary life and occupies home ranges, which it defends from individuals of the same sex. The range of a male tiger overlaps with that of multiple females with whom he mates. Females give birth to usually two or three cubs that stay with their mother for about two years. When becoming independent, they leave their mother's home range and establish their own.

Since the early 20th century, tiger populations have lost at least 93% of their historic range and are locally extinct in West and Central Asia, in large areas of China, and on the islands of Java and Bali. Today, the tiger's range is severely fragmented. It is listed as Endangered on the IUCN Red List of Threatened Species, as its range is thought to have declined by 53% to 68% since the late 1990s. Major reasons for this decline are habitat destruction and fragmentation due to deforestation, poaching for fur, and the illegal trade of tiger body parts for medicinal purposes. Tigers are also victims of human–wildlife conflict as they attack and prey on livestock in areas where natural prey is scarce.

The tiger is legally protected in all range countries. National conservation measures consist of action plans, anti-poaching patrols and schemes for monitoring tiger populations. In several range countries, wildlife corridors have been established and tiger reintroduction is planned..

The tiger is among the most popular of the world's charismatic megafauna. It has been kept in captivity since ancient times and has been trained to perform in circuses and other entertainment shows. The tiger featured prominently in the ancient mythology and folklore of cultures throughout its historic range and has continued to appear in culture worldwide.

Etymology[edit]

The Old English tigras derives from Old French tigre, from Latin tigris, which was a borrowing from Classical Greek τίγρις 'tigris'.[4] Since ancient times, the word tigris has been suggested to originate from the Armenian or Persian word for 'arrow', which may also be the origin of the name for the river Tigris.[5][6] However, today, the connection between the animal and the river is doubted, and they are likely to be homonyms.[6]

Taxonomy[edit]

In 1758, Carl Linnaeus described the tiger in his work Systema Naturae and gave it the scientific name Felis tigris, as the genus Felis was being used for all cats at the time. His scientific description was based on descriptions by earlier naturalists such as Conrad Gessner and Ulisse Aldrovandi.[2] In 1929, Reginald Innes Pocock subordinated the species under the genus Panthera using the scientific name Panthera tigris.[7][8]

Subspecies[edit]

Nine recent tiger subspecies have been proposed between the early 19th and early 21st centuries, the Bengal, Malayan, Indochinese, South China, Siberian, Caspian, Javan, Bali and Sumatran tigers.[9][10] The validity of several tiger subspecies was questioned in 1999 as most putative subspecies were distinguished on the basis of fur length and colouration, striping patterns and body size of specimens in natural history museum collections that are not necessarily representative for the entire population, it was proposed to recognise only two tiger subspecies as valid, namely P. t. tigris in mainland Asia and the smaller P. t. sondaica in the Greater Sunda Islands.[11]

This two-subspecies proposal was reaffirmed in 2015 through a comprehensive analysis of morphological, ecological, and mitochondrial DNA (mtDNA) traits of all putative tiger subspecies. The continental nominate subspecies P. t. tigris constitutes two clades: a northern clade composed of the Siberian and Caspian tiger populations, and a southern clade composed of all other mainland populations.[10] In 2017, the Cat Classification Task Force of the IUCN Cat Specialist Group revised felid taxonomy in accordance with the 2015 two-subspecies proposal and recognised only P. t. tigris and P. t. sondaica.[12] Results of a 2018 whole-genome sequencing study of 32 samples from the six living putative subspecies—the Bengal, Malayan, Indochinese, South China, Siberian and Sumatran tiger—found them to be distinct and separate clades.[13] These results were corroborated in 2021 and 2023.[14][15] The Cat Specialist Group states that "Given the varied interpretations of data, the [subspecific] taxonomy of this species is currently under review by the IUCN SSC Cat Specialist Group."[16]

The following tables are based on the classification of the tiger as of 2005,[9] and also reflect the classification recognised by the Cat Classification Task Force in 2017.[12]

Panthera tigris tigris (Linnaeus, 1758)[2]
Population Description Image
Bengal tiger formerly P. t. tigris (Linnaeus, 1758)[2] This population inhabits the Indian subcontinent.[17] The Bengal tiger has shorter fur than tigers further north,[8] with a light tawny to orange-red colouration,[8][18] and relatively long and narrow nostrils.[19]
Caspian tiger formerly P. t. virgata (Illiger, 1815)[20] This population occurred from Turkey to around the Caspian Sea.[17] It had bright rusty-red fur with thin and closely spaced brownish stripes,[21] and a broad occipital bone.[11] Genetic analysis revealed that it was closely related to the Siberian tiger.[22] It has been extinct since the 1970s.[23]
Siberian tiger formerly P. t. altaica (Temminck, 1844)[24] This population lives in the Russian Far East, Northeast China and possibly North Korea.[17] The Siberian tiger has long hair and dense fur.[24] Its ground colour varies widely from ochre-yellow in winter to more reddish and vibrant after moulting.[25] The skull is shorter and broader than the skulls of tigers further south.[19]
South China tiger formerly P. t. amoyensis (Hilzheimer, 1905)[26] This tiger historically lived in south-central China.[17] The skulls of the five type specimens had shorter carnassials and molars than tigers from India, a smaller cranium, orbits set closer together and larger postorbital processes; skins were yellowish with rhombus-like stripes.[26] It has a unique mtDNA haplotype due to interbreeding with ancient tiger lineages.[12][27][28] It is extinct in the wild as there has not been a confirmed sighting since the 1970s,[1] and survives only in captivity.[15]
Indochinese tiger formerly P. t. corbetti (Mazák, 1968)[29] This tiger population occurs on the Indochinese Peninsula.[17] Indochinese tiger specimens are smaller with smaller skulls than specimens from India and appear to have darker fur with slightly narrower stripes.[29][30]
Malayan tiger formerly P. t. jacksoni (Luo et al., 2004)[31] The Malayan tiger was proposed as a distinct subspecies on the basis of mtDNA and micro-satellite sequences that differ from the Indochinese tiger.[31] It does not differ significantly in fur colour or skull size from Indochinese tigers.[30] There is no clear geographical barrier between tiger populations in northern Malaysia and southern Thailand.[1]
Panthera tigris sondaica (Temminck, 1844)[12]
Population Description Image
Javan tiger formerly P. t. sondaica (Temminck, 1944)[24] This tiger was described based on an unspecified number of skins with short and smooth hair.[24] Tigers from Java were small compared to tigers of the Asian mainland, had relatively elongated skulls compared to the Sumatran tiger, and longer, thinner and more numerous stripes.[30] The Javan tiger is thought to have gone extinct by the 1980s.[23]
Bali tiger formerly P. t. balica (Schwarz, 1912)[32] This tiger occurred on Bali and had brighter fur and a smaller skull than the Javan tiger.[32][33] A typical feature of Bali tiger skulls is the narrow occipital bone, which is similar to the Javan tiger's skull.[34] The tiger went extinct in the 1940s.[23]
Sumatran tiger formerly P. t. sumatrae (Pocock, 1929)[35] The type specimen from Sumatra had dark fur.[35] The Sumatran tiger has particularly long hair around the face,[17] thick body stripes,[30] and a broader and smaller nasal bone than other island tigers.[30][19]

Evolution[edit]

Panthera
Phylogeny of the Panthera based on nuclear DNA[36]

The tiger shares the genus Panthera with the lion, leopard, jaguar and snow leopard. Results of genetic analyses indicate that the tiger and snow leopard are sister species whose lineages split from each other between 2.70 and 3.70 million years ago.[37] The tiger's whole genome sequencing shows repeated sequences that parallel those in other cat genomes.[38]

The fossil species Panthera palaeosinensis of early Pleistocene northern China was described as a possible tiger ancestor when it was discovered in 1924, but modern cladistics places it as basal to modern Panthera.[39][40] Panthera zdanskyi, which lived around the same time and place, was suggested to be a sister species of the modern tiger when it was examined in 2014.[40] However, as of 2023, at least two subsequent studies considered P. zdanskyi likely to be a synonym of P. palaeosinensis, noting that its proposed differences from that species fell within the range of individual variation.[41][42] The earliest appearance of the modern tiger species in the fossil record are jaw fragments from Lantion in China that are dated to the early Pleistocene.[40]

Middle- to late-Pleistocene tiger fossils have been found throughout China, Sumatra and Java. Prehistoric subspecies include Panthera tigris trinilensis and P. t. soloensis of Java and Sumatra, and P. t. acutidens of China; late Pleistocene and early Holocene fossils of tigers have also been found in

Planets

Planets theme by Jaafar

Download: Planets.p3t

Planets Theme
(3 backgrounds, HD only)

Redirect to:

Ball Python Morphs

Ball Python Morphs theme by Morph Keeper

Download: BallPythonMorphs.p3t

Ball Python Morphs Theme
(1 background)

P3T Unpacker v0.12
Copyright (c) 2007. Anoop Menon

This program unpacks Playstation 3 Theme files (.p3t) so that you can touch-up an existing theme to your likings or use a certain wallpaper from it (as many themes have multiple). But remember, if you use content from another theme and release it, be sure to give credit!

Download for Windows: p3textractor.zip

Instructions:

Download p3textractor.zip from above. Extract the files to a folder with a program such as WinZip or WinRAR. Now there are multiple ways to extract the theme.

The first way is to simply open the p3t file with p3textractor.exe. If you don’t know how to do this, right click the p3t file and select Open With. Alternatively, open the p3t file and it will ask you to select a program to open with. Click Browse and find p3textractor.exe from where you previously extracted it to. It will open CMD and extract the theme to extracted.[filename]. After that, all you need to do for any future p3t files is open them and it will extract.

The second way is very simple. Just drag the p3t file to p3textractor.exe. It will open CMD and extract the theme to extracted.[filename].

For the third way, first put the p3t file you want to extract into the same folder as p3textractor.exe. Open CMD and browse to the folder with p3extractor.exe. Enter the following:
p3textractor filename.p3t [destination path]Replace filename with the name of the p3t file, and replace [destination path] with the name of the folder you want the files to be extracted to. A destination path is not required. By default it will extract to extracted.filename.

Cross Over

Cross Over theme by ltmreal

Download: CrossOver.p3t

Cross Over Theme
(5 backgrounds)

Redirect to:

Detroit

Detroit theme by Ghetto Ass Productions

Download: Detroit.p3t

Detroit Theme
(1 background)

Detroit
Official seal of Detroit
Etymology: French: détroit (strait)
Nicknames: 
The Motor City, Motown, The D, 313, D-Town, Renaissance City, The Town That Put The World on Wheels, Hockeytown, Detroit Rock City
Motto(s): 
Speramus Meliora; Resurget Cineribus
(Latin: We Hope For Better Things; It Shall Rise From the Ashes)
Map
Map
Map
Map
Coordinates: 42°19′53″N 83°02′45″W / 42.33139°N 83.04583°W / 42.33139; -83.04583[1]
Country United States
State Michigan
CountyWayne
FoundedJuly 24, 1701 (1701-07-24)
IncorporatedSeptember 13, 1806 (1806-09-13)
Founded byAntoine de la Mothe Cadillac & Alphonse de Tonty
Named forDetroit River
Government
 • TypeStrong Mayor
 • BodyDetroit City Council
 • MayorMike Duggan (D)
 • ClerkJanice Winfrey
 • City council
Members
  • Mary D. Waters – At Large
  • Coleman Young II – At Large
  • James Tate – District 1 Northwest
  • Angela Calloway – District 2 Near Northwest
  • Scott Benson – District 3 Northeast
  • Latisha Johnson – District 4 Far East Side
  • Mary Sheffield – District 5 Central-Near East Side
  • Gabriela Santiago-Romero – District 6 Southwest
  • Fred Durhal III – District 7 West Side
Area
 • City142.89 sq mi (370.09 km2)
 • Land138.73 sq mi (359.31 km2)
 • Water4.16 sq mi (10.78 km2)
 • Urban
1,284.8 sq mi (3,327.7 km2)
 • Metro
3,888.4 sq mi (10,071 km2)
Elevation656 ft (200 m)
Population
 • City639,111
 • Estimate 
(2023)[4]
633,218
 • Rank63rd in North America
27th in the United States
1st in Michigan
 • Density4,606.84/sq mi (1,778.71/km2)
 • Urban3,776,890 (US: 12th)
 • Urban density2,939.6/sq mi (1,135.0/km2)
 • Metro4,365,205 (US: 14th)
DemonymDetroiter
GDP
 • MSA$305.412 billion (2022)
Time zoneUTC−5 (EST)
 • Summer (DST)UTC−4 (EDT)
ZIP Codes
482XX
Area code313
FIPS code26-22000
GNIS feature ID1617959[1]
Major airportsDetroit Metropolitan Airport, Coleman A. Young International Airport
Mass transitDetroit Department of Transportation, Detroit People Mover, QLine
Websitedetroitmi.gov

Detroit (/dɪˈtrɔɪt/, dih-TROYT; locally also /ˈdtrɔɪt/, DEE-troyt)[8] is the most populous city in the U.S. state of Michigan. It is the largest U.S. city on the United States–Canada border, and the seat of government of Wayne County. Detroit had a population of 639,111 at the 2020 census,[9] making it the 29th-most populous city in the United States. Detroit experienced a dramatic decline in population from a peak of 1,849,568 in 1950, losing two-thirds of its population (65.4%) by 2020. The Metro Detroit area, home to 4.3 million people, is the second-largest in the Midwest after the Chicago metropolitan area and the 14th-largest in the United States. A significant cultural center, Detroit is known for its contributions to music, art, architecture, and design, in addition to its historical automotive background.[10][11]

In 1701, Antoine de la Mothe Cadillac and Alphonse de Tonty founded Fort Pontchartrain du Détroit. During the late 19th and early 20th century, it became an important industrial hub at the center of the Great Lakes region. The city's population rose to be the fourth-largest in the nation by 1920, after New York City, Chicago, and Philadelphia, with the expansion of the automotive industry in the early 20th century.[12] The Detroit River became the busiest commercial hub in the world as it carried over 65 million tons of shipping commerce each year. In the mid-20th century, Detroit entered a state of urban decay which has continued to the present, as a result of industrial restructuring, the loss of jobs in the auto industry, and rapid suburbanization. Since reaching a peak of 1.85 million at the 1950 census, Detroit's population has declined by more than 65 percent.[9] In 2013, Detroit became the largest U.S. city to file for bankruptcy, which it successfully exited in December 2014.[13]

Detroit is a port on the Detroit River, one of the four major straits that connect the Great Lakes system to the St. Lawrence Seaway. The city anchors the second-largest regional economy in the Midwest and the 14th-largest in the United States.[14] Detroit is best known as the center of the U.S. automotive industry, and the "Big Three" auto manufacturers—General Motors, Ford, and Stellantis North America (Chrysler)—are all headquartered in Metro Detroit.[15] The Detroit Metropolitan Airport is among the most important hub airports in the United States. Detroit and its neighboring Canadian city Windsor constitute the second-busiest international crossing in North America, after San Diego–Tijuana.[16]

Detroit's diverse culture has had both local and international influence, particularly in music, with the city giving rise to the genres of Motown and techno and playing an important role in the development of jazz, hip-hop, rock, and punk. The rapid growth of Detroit in its boom years resulted in a globally unique stock of architectural monuments and historic places. Since the 2000s, conservation efforts have managed to save many architectural pieces and achieve several large-scale revitalizations, including the restoration of several historic theaters and entertainment venues, high-rise renovations, new sports stadiums, and a riverfront revitalization project.

An increasingly popular tourist destination, Detroit receives 16 million visitors per year.[17] In 2015, Detroit was named a "City of Design" by UNESCO, the first U.S. city to receive that designation.[18]

History[edit]

Toponymy[edit]

Detroit and adjacent Windsor Canada separated by the Detroit River, as seen from the GM Renaissance tower
Detroit and adjacent Windsor, Ontario, Canada separated by the Detroit River

Detroit is named after the Detroit River, connecting Lake Huron with Lake Erie. The name comes from the French word détroit meaning 'strait' as the city was situated on a narrow passage of water linking the two lakes. The river was known as le détroit du Lac Érié in French, which means 'the strait of Lake Erie'.[19][20] In the historical context, the strait included the St. Clair River, Lake St. Clair, and the Detroit River.[21][22]

Early settlement[edit]

Historical affiliations

 Kingdom of France 1701–1760
 Kingdom of Great Britain 1760–1783
 United States 1783-1812
 United Kingdom 1812–1813
 United States 1813–present

Paleo-Indians inhabited areas near Detroit as early as 11,000 years ago including the culture referred to as the Mound Builders.[23] By the 17th century, the region was inhabited by Huron, Odawa, Potawatomi, and Iroquois peoples.[24] The area is known by the Anishinaabe people as Waawiiyaataanong, translating to 'where the water curves around'.[25]

The first Europeans did not penetrate into the region and reach the straits of Detroit until French missionaries and traders worked their way around the Iroquois League, with whom they were at war in the 1630s.[26] The Huron and Neutral people held the north side of Lake Erie until the 1650s, when the Iroquois pushed them and the Erie people away from the lake and its beaver-rich feeder streams in the Beaver Wars of 1649–1655.[26] By the 1670s, the war-weakened Iroquois laid claim to as far south as the

New York City Exclusive

New York City Exclusive theme by ltmreal

Download: NewYorkCityExclusive.p3t

New York City Exclusive Theme
(2 backgrounds)

P3T Unpacker v0.12
Copyright (c) 2007. Anoop Menon

This program unpacks Playstation 3 Theme files (.p3t) so that you can touch-up an existing theme to your likings or use a certain wallpaper from it (as many themes have multiple). But remember, if you use content from another theme and release it, be sure to give credit!

Download for Windows: p3textractor.zip

Instructions:

Download p3textractor.zip from above. Extract the files to a folder with a program such as WinZip or WinRAR. Now there are multiple ways to extract the theme.

The first way is to simply open the p3t file with p3textractor.exe. If you don’t know how to do this, right click the p3t file and select Open With. Alternatively, open the p3t file and it will ask you to select a program to open with. Click Browse and find p3textractor.exe from where you previously extracted it to. It will open CMD and extract the theme to extracted.[filename]. After that, all you need to do for any future p3t files is open them and it will extract.

The second way is very simple. Just drag the p3t file to p3textractor.exe. It will open CMD and extract the theme to extracted.[filename].

For the third way, first put the p3t file you want to extract into the same folder as p3textractor.exe. Open CMD and browse to the folder with p3extractor.exe. Enter the following:
p3textractor filename.p3t [destination path]Replace filename with the name of the p3t file, and replace [destination path] with the name of the folder you want the files to be extracted to. A destination path is not required. By default it will extract to extracted.filename.

Palo Tema

Palo Tema theme by Daniele Palo

Download: PaloTema.p3t

Palo Tema Theme
(6 backgrounds, different for HD and SD)

P3T Unpacker v0.12
Copyright (c) 2007. Anoop Menon

This program unpacks Playstation 3 Theme files (.p3t) so that you can touch-up an existing theme to your likings or use a certain wallpaper from it (as many themes have multiple). But remember, if you use content from another theme and release it, be sure to give credit!

Download for Windows: p3textractor.zip

Instructions:

Download p3textractor.zip from above. Extract the files to a folder with a program such as WinZip or WinRAR. Now there are multiple ways to extract the theme.

The first way is to simply open the p3t file with p3textractor.exe. If you don’t know how to do this, right click the p3t file and select Open With. Alternatively, open the p3t file and it will ask you to select a program to open with. Click Browse and find p3textractor.exe from where you previously extracted it to. It will open CMD and extract the theme to extracted.[filename]. After that, all you need to do for any future p3t files is open them and it will extract.

The second way is very simple. Just drag the p3t file to p3textractor.exe. It will open CMD and extract the theme to extracted.[filename].

For the third way, first put the p3t file you want to extract into the same folder as p3textractor.exe. Open CMD and browse to the folder with p3extractor.exe. Enter the following:
p3textractor filename.p3t [destination path]Replace filename with the name of the p3t file, and replace [destination path] with the name of the folder you want the files to be extracted to. A destination path is not required. By default it will extract to extracted.filename.

Planet

Planet theme by Quickly Jo

Download: Planet.p3t

Planet Theme
(6 backgrounds)

The eight planets of the Solar System with size to scale (up to down, left to right): Saturn, Jupiter, Uranus, Neptune (outer planets), Earth, Venus, Mars, and Mercury (inner planets)

A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself.[1] The Solar System has eight planets by the most restrictive definition of the term: the terrestrial planets Mercury, Venus, Earth, and Mars, and the giant planets Jupiter, Saturn, Uranus, and Neptune. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called accretion.

The word planet comes from the Greek πλανήται (planḗtai) 'wanderers'. In antiquity, this word referred to the Sun, Moon, and five points of light visible to the naked eye that moved across the background of the stars—namely, Mercury, Venus, Mars, Jupiter, and Saturn. Planets have historically had religious associations: multiple cultures identified celestial bodies with gods, and these connections with mythology and folklore persist in the schemes for naming newly discovered Solar System bodies. Earth itself was recognized as a planet when heliocentrism supplanted geocentrism during the 16th and 17th centuries.

With the development of the telescope, the meaning of planet broadened to include objects only visible with assistance: the moons of the planets beyond Earth; the ice giants Uranus and Neptune; Ceres and other bodies later recognized to be part of the asteroid belt; and Pluto, later found to be the largest member of the collection of icy bodies known as the Kuiper belt. The discovery of other large objects in the Kuiper belt, particularly Eris, spurred debate about how exactly to define a planet. In 2006, the International Astronomical Union (IAU) adopted a definition of a planet in the Solar System, placing the four terrestrial planets and the four giant planets in the planet category; Ceres, Pluto, and Eris are in the category of dwarf planet.[2][3][4] Many planetary scientists have nonetheless continued to apply the term planet more broadly, including dwarf planets as well as rounded satellites like the Moon.[5]

Further advances in astronomy led to the discovery of over five thousand planets outside the Solar System, termed exoplanets. These often show unusual features that the Solar System planets do not show, such as hot Jupiters—giant planets that orbit close to their parent stars, like 51 Pegasi b—and extremely eccentric orbits, such as HD 20782 b. The discovery of brown dwarfs and planets larger than Jupiter also spurred debate on the definition, regarding where exactly to draw the line between a planet and a star. Multiple exoplanets have been found to orbit in the habitable zones of their stars (where liquid water can potentially exist on a planetary surface), but Earth remains the only planet known to support life.

Formation[edit]

Artists' impressions
A protoplanetary disk
Protoplanets colliding during planet formation

It is not known with certainty how planets are formed. The prevailing theory is that they coalesce during the collapse of a nebula into a thin disk of gas and dust. A protostar forms at the core, surrounded by a rotating protoplanetary disk. Through accretion (a process of sticky collision) dust particles in the disk steadily accumulate mass to form ever-larger bodies. Local concentrations of mass known as planetesimals form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become ever denser until they collapse inward under gravity to form protoplanets.[6] After a planet reaches a mass somewhat larger than Mars's mass, it begins to accumulate an extended atmosphere,[7] greatly increasing the capture rate of the planetesimals by means of atmospheric drag.[8][9] Depending on the accretion history of solids and gas, a giant planet, an ice giant, or a terrestrial planet may result.[10][11][12] It is thought that the regular satellites of Jupiter, Saturn, and Uranus formed in a similar way;[13][14] however, Triton was likely captured by Neptune,[15] and Earth's Moon[16] and Pluto's Charon might have formed in collisions.[17]

When the protostar has grown such that it ignites to form a star, the surviving disk is removed from the inside outward by photoevaporation, the solar wind, Poynting–Robertson drag and other effects.[18][19] Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a larger, combined protoplanet or release material for other protoplanets to absorb.[20] Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become natural satellites of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or small bodies.[21][22]

Supernova remnant ejecta producing planet-forming material

The energetic impacts of the smaller planetesimals (as well as radioactive decay) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by density, with higher density materials sinking toward the core.[23] Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the mantle and from the subsequent impact of comets[24] (smaller planets will lose any atmosphere they gain through various escape mechanisms[25]).

With the discovery and observation of planetary systems around stars other than the Sun, it is becoming possible to elaborate, revise or even replace this account. The level of metallicity—an astronomical term describing the abundance of chemical elements with an atomic number greater than 2 (helium)—appears to determine the likelihood that a star will have planets.[26][27] Hence, a metal-rich population I star is more likely to have a substantial planetary system than a metal-poor, population II star.[28]

Planets in the Solar System[edit]

According to the IAU definition, there are eight planets in the Solar System, which are (in increasing distance from the Sun):[2] Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Jupiter is the largest, at 318 Earth masses, whereas Mercury is the smallest, at 0.055 Earth masses.[29]

The planets of the Solar System can be divided into categories based on their composition. Terrestrials are similar to Earth, with bodies largely composed of rock and metal: Mercury, Venus, Earth, and Mars. Earth is the largest terrestrial planet.[30] Giant planets are significantly more massive than the terrestrials: Jupiter, Saturn, Uranus, and Neptune.[30] They differ from the terrestrial planets in composition. The gas giants, Jupiter and Saturn, are primarily composed of hydrogen and helium and are the most massive planets in the Solar System. Saturn is one third as massive as Jupiter, at 95 Earth masses.[31] The ice giants, Uranus and Neptune, are primarily composed of low-boiling-point materials such as water, methane, and ammonia, with thick atmospheres of hydrogen and helium. They have a significantly lower mass than the gas giants (only 14 and 17 Earth masses).[31]

The Sun's, planets', dwarf planets' and moons' size to scale, labelled. Distance of objects is not to scale. The asteroid belt lies between the orbits of Mars and Jupiter, the Kuiper belt lies beyond Neptune's orbit.

Dwarf planets are gravitationally rounded, but have not cleared their orbits of other bodies. In increasing order of average distance from the Sun, the ones generally agreed among astronomers are Ceres, Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, Eris, and Sedna.[32][33] Ceres is the largest object in the asteroid belt, located between the orbits of Mars and Jupiter. The other eight all orbit beyond Neptune. Orcus, Pluto, Haumea, Quaoar, and Makemake orbit in the Kuiper belt, which is a second belt of small Solar System bodies beyond the orbit of Neptune. Gonggong and Eris orbit in the scattered disc, which is somewhat further out and, unlike the Kuiper belt, is unstable towards interactions with Neptune. Sedna is the largest known detached object, a population that never comes close enough to the Sun to interact with any of the classical planets; the origins of their orbits are still being debated. All nine are similar to terrestrial planets in having a solid surface, but they are made of ice and rock rather than rock and metal. Moreover, all of them are smaller than Mercury, with Pluto being the largest known dwarf planet and Eris being the most massive.[34][35]

There are at least nineteen planetary-mass moons or satellite planets—moons large enough to take on ellipsoidal shapes:[4]

The Moon, Io, and Europa have compositions similar to the terrestrial planets; the others are made of ice and rock like the dwarf planets, with Tethys being made of almost pure ice. Europa is often considered an icy planet, though, because its surface ice layer makes it difficult to study its interior.[4][36] Ganymede and Titan are larger than Mercury by radius, and Callisto almost equals it, but all three are much less massive. Mimas is the smallest object generally agreed to be a geophysical planet, at about six millionths of Earth's mass, though there are many larger bodies that may not be geophysical planets (e.g. Salacia).[32]

Exoplanets[edit]

Exoplanet detections per year
Exoplanet detections per year as of August 2023 (by NASA Exoplanet Archive)[37]

An exoplanet is a planet outside the Solar System. As of 1 July 2024, there are 6,660 confirmed exoplanets in 4,868 planetary systems, with 995 systems having more than one planet.[38] Known exoplanets range in size from gas giants about twice as large as Jupiter down to just over the size of the Moon. Analysis of gravitational microlensing data suggests a minimum average of 1.6 bound planets for every star in the Milky Way.[39]

In early 1992, radio astronomers Aleksander Wolszczan and Dale Frail announced the discovery of two planets orbiting the pulsar PSR 1257+12.[40] This discovery was confirmed and is generally considered to be the first definitive detection of exoplanets. Researchers suspect they formed from a disk remnant left over from the supernova that produced the pulsar.[41]

The first confirmed discovery of an exoplanet orbiting an ordinary main-sequence star occurred on 6 October 1995, when Michel Mayor and Didier Queloz of the University of Geneva announced the detection of 51 Pegasi b, an exoplanet around 51 Pegasi.[42] From then until the Kepler mission, most of the known exoplanets were gas giants comparable in mass to Jupiter or larger as they were more easily detected. The catalog of Kepler candidate planets consists mostly of planets the size of Neptune and smaller, down to smaller than Mercury.[43][44]

In 2011, the Kepler Space Telescope team reported the discovery of the first Earth-sized exoplanets orbiting a Sun-like star, Kepler-20e and Kepler-20f.[45][46][47] Since that time, more than 100 planets have been identified that are approximately the same size as Earth, 20 of which orbit in the habitable zone of their star—the range of orbits where a terrestrial planet could sustain liquid water on its surface, given enough atmospheric pressure.[48][49][50] One in five Sun-like stars is thought to have an Earth-sized planet in its habitable zone, which suggests that the nearest would be expected to be within 12 light-years distance from Earth.[a] The frequency of occurrence of such terrestrial planets is one of the variables in the Drake equation, which estimates the number of intelligent, communicating civilizations that exist in the Milky Way.[53]

There are types of planets that do not exist in the Solar System: super-Earths and mini-Neptunes, which have masses between that of Earth and Neptune. Objects less than about twice the mass of Earth are expected to be rocky like Earth; beyond that, they become a mixture of volatiles and gas like Neptune.[54] The planet Gliese 581c, with a mass 5.5–10.4 times the mass of Earth,[55] attracted attention upon its discovery for potentially being in the habitable zone,[56] though later studies concluded that it is actually too close to its star to be habitable.[57] Planets more massive than Jupiter are also known, extending seamlessly into the realm of brown dwarfs.[58]

Exoplanets have been found that are much closer to their parent star than any planet in the Solar System is to the Sun. Mercury, the closest planet to the Sun at 0.4 AU, takes 88 days for an orbit, but ultra-short period planets can orbit in less than a day. The Kepler-11 system has five of its planets in shorter orbits than Mercury's, all of them much more massive than Mercury. There are hot Jupiters, such as 51 Pegasi b,[42] that orbit very close to their star and may evaporate to become chthonian planets, which are the leftover cores. There are also exoplanets that are much farther from their star. Neptune is 30 AU from the Sun and takes 165 years to orbit, but there are exoplanets that are thousands of AU from their star and take more than a million years to orbit (e.g. COCONUTS-2b).[59]

Attributes[edit]

Although each planet has unique physical characteristics, a number of broad commonalities do exist among them. Some of these characteristics, such as rings or natural satellites, have only as yet been observed in planets in the Solar System, whereas others are commonly observed in exoplanets.[60]

Dynamic characteristics[edit]

Orbit[edit]

The orbit of the planet Neptune compared to that of Pluto. Note the elongation of Pluto's orbit in relation to Neptune's (eccentricity), as well as its large angle to the ecliptic (inclination).

In the Solar System, all the planets orbit the Sun in the same direction as the Sun rotates: counter-clockwise as seen from above the Sun's north pole. At least one exoplanet, WASP-17b, has been found to orbit in the opposite direction to its star's rotation.[61] The period of one revolution of a planet's orbit is known as its sidereal period or year.[62] A planet's year depends on its distance from its star; the farther a planet is from its star, the longer the distance it must travel and the slower its speed, since it is less affected by its star's gravity.

No planet's orbit is perfectly circular, and hence the distance of each from the host star varies over the course of its year. The closest approach to its star is called its periastron, or perihelion in the Solar System, whereas its farthest separation from the star is called its apastron (aphelion). As a planet approaches periastron, its speed increases as it trades gravitational potential energy for kinetic energy, just as a falling object on Earth accelerates as it falls. As the planet nears apastron, its speed decreases, just as an object thrown upwards on Earth slows down as it reaches the apex of its trajectory.[63]

Each planet's orbit is delineated by a set of elements:

  • The eccentricity of an orbit describes the elongation of a planet's elliptical (oval) orbit. Planets with low eccentricities have more circular orbits, whereas planets with high eccentricities have more elliptical orbits. The planets and large moons in the Solar System have relatively low eccentricities, and thus nearly circular orbits.[62] The comets and many Kuiper belt objects, as well as several exoplanets, have very high eccentricities, and thus exceedingly elliptical orbits.[64][65]
  • The semi-major axis gives the size of the orbit. It is the distance from the midpoint to the longest diameter of its elliptical orbit. This distance is not the same as its apastron, because no planet's orbit has its star at its exact centre.[62]
  • The inclination of a planet tells how far above or below an established reference plane its orbit is tilted. In the Solar System, the reference plane is the plane of Earth's orbit, called the ecliptic. For exoplanets, the plane, known as the sky plane or plane of the sky, is the plane perpendicular to the observer's line of sight from Earth.[66] The orbits of the eight major planets of the Solar System all lie very close to the ecliptic; however, some smaller objects like Pallas, Pluto, and Eris orbit at far more extreme angles to it, as do comets.[67] The large moons are generally not very inclined to their parent planets' equators, but Earth's Moon, Saturn's Iapetus, and Neptune's Triton are exceptions. Triton is unique among the large moons in that it orbits retrograde, i.e. in the direction opposite to its parent planet's rotation.[68]
  • The points at which a planet crosses above and below its reference plane are called its ascending and descending nodes.[62] The longitude of the ascending node is the angle between the reference plane's 0 longitude and the planet's ascending node. The argument of periapsis (or perihelion in the Solar System) is the angle between a planet's ascending node and its closest approach to its star.[62]

Axial tilt[edit]

Earth's axial tilt is about 23.4°. It oscillates between 22.1° and 24.5° on a 41,000-year cycle and is currently decreasing.

Planets have varying degrees of axial tilt; they spin at an angle to the plane of their stars' equators. This causes the amount of light received by each hemisphere to vary over the course of its year; when the northern hemisphere points away from its star, the southern hemisphere points towards it, and vice versa. Each planet therefore has seasons, resulting in changes to the climate over the course of its year. The time at which each hemisphere points farthest or nearest from its star is known as its solstice. Each planet has two in the course of its orbit; when one hemisphere has its summer solstice with its day being the longest, the other has its winter solstice when its day is shortest. The varying amount of light and heat received by each hemisphere creates annual changes in weather patterns for each half of the planet. Jupiter's axial tilt is very small, so its seasonal variation is minimal; Uranus, on the other hand, has an axial tilt so extreme it is virtually on its side, which means that its hemispheres are either continually in sunlight or continually in darkness around the time of its solstices.[69] In the Solar System, Mercury, Venus, Ceres, and Jupiter have very small tilts; Pallas, Uranus, and Pluto have extreme ones; and Earth, Mars, Vesta, Saturn, and Neptune have moderate ones.[70][71][72][73] Among exoplanets, axial tilts are not known for certain, though most hot Jupiters are believed to have a negligible axial tilt as a result of their proximity to their stars.[74] Similarly, the axial tilts of the planetary-mass moons are near zero,[75] with Earth's Moon at 6.687° as the biggest exception;[76] additionally, Callisto's axial tilt varies between 0 and about 2 degrees on timescales of thousands of years.[77]

Rotation[edit]

White Litho

White Litho theme by multiple authors

Download: WhiteLitho.p3t

White Litho Theme
(4 backgrounds)

P3T Unpacker v0.12
Copyright (c) 2007. Anoop Menon

This program unpacks Playstation 3 Theme files (.p3t) so that you can touch-up an existing theme to your likings or use a certain wallpaper from it (as many themes have multiple). But remember, if you use content from another theme and release it, be sure to give credit!

Download for Windows: p3textractor.zip

Instructions:

Download p3textractor.zip from above. Extract the files to a folder with a program such as WinZip or WinRAR. Now there are multiple ways to extract the theme.

The first way is to simply open the p3t file with p3textractor.exe. If you don’t know how to do this, right click the p3t file and select Open With. Alternatively, open the p3t file and it will ask you to select a program to open with. Click Browse and find p3textractor.exe from where you previously extracted it to. It will open CMD and extract the theme to extracted.[filename]. After that, all you need to do for any future p3t files is open them and it will extract.

The second way is very simple. Just drag the p3t file to p3textractor.exe. It will open CMD and extract the theme to extracted.[filename].

For the third way, first put the p3t file you want to extract into the same folder as p3textractor.exe. Open CMD and browse to the folder with p3extractor.exe. Enter the following:
p3textractor filename.p3t [destination path]Replace filename with the name of the p3t file, and replace [destination path] with the name of the folder you want the files to be extracted to. A destination path is not required. By default it will extract to extracted.filename.